# Asymptotics of Some Convolutional Recurrences

### Abstract

We study the asymptotic behavior of the terms in sequences satisfying recurrences of the form $a_n = a_{n-1} + \sum_{k=d}^{n-d} f(n,k) a_k a_{n-k}$ where, very roughly speaking, $f(n,k)$ behaves like a product of reciprocals of binomial coefficients. Some examples of such sequences from map enumerations, Airy constants, and PainlevĂ© I equations are discussed in detail.