# Building Graphs from Colored Trees

### Abstract

We will explore the computational complexity of satisfying certain sets of neighborhood conditions in graphs with various properties. More precisely, fix a radius $\rho$ and let $N(G)$ be the set of isomorphism classes of $\rho$-neighborhoods of vertices of $G$ where $G$ is a graph whose vertices are colored (not necessarily properly) by colors from a fixed finite palette. The *root* of the neighborhood will be the unique vertex at the "center" of the graph. Given a set $\mathcal{S}$ of colored graphs with a unique root, when is there a graph $G$ with $N(G)=\mathcal{S}$? Or $N(G) \subset \mathcal{S}$? What if $G$ is forced to be infinite, or connected, or both?

If the neighborhoods are unrestricted, all these problems are recursively unsolvable; this follows from the work of Bulitko [Graphs with prescribed environments of the vertices. *Trudy Mat. Inst. Steklov.*, 133:78–94, 274, 1973]. In contrast, when the neighborhoods are cycle free, all the problems are in the class $\mathtt{P}$. Surprisingly, if $G$ is required to be a regular (and thus infinite) tree, we show the realization problem is NP-complete (for degree 3 and higher); whereas, if $G$ is allowed to be any finite graph, the realization problem is in P.