Demazure Crystals, Kirillov-Reshetikhin Crystals, and the Energy Function

  • Anne Schilling
  • Peter Tingley
Keywords: crystal bases


It has previously been shown that, at least for non-exceptional Kac-Moody Lie algebras, there is a close connection between Demazure crystals and tensor products of Kirillov-Reshetikhin crystals. In particular, certain Demazure crystals are isomorphic as classical crystals to tensor products of  Kirillov-Reshetikhin crystals via a canonically chosen isomorphism. Here we show that this isomorphism intertwines the natural affine grading on Demazure crystals with a combinatorially defined energy function. As a consequence, we obtain a formula of the Demazure character in terms of the energy function, which has applications to Macdonald polynomials and $q$-deformed Whittaker functions.

Author Biographies

Anne Schilling, University of California at Davis

Professor, Department of Mathematics, UC Davis

Peter Tingley, Postdoc, M.I.T. Faculty, Loyola, Chicago
Faculty, Loyola
Article Number