-
Yuexiao Xu
-
Sherry H. F. Yan
Keywords:
alternating permutation, pattern avoiding, Yamanouchi word, standard Young tableau, shifted standard Young tableau.
Abstract
In this paper, we establish bijections between the set of 4123-avoiding down-up alternating permutations of length $2n$ and the set of standard Young tableaux of shape $(n,n,n)$, and between the set of 4123-avoiding down-up alternating permutations of length $2n-1$ and the set of shifted standard Young tableaux of shape $(n+1, n, n-1)$ via an intermediate structure of Yamanouchi words. Moreover, we show that 4123-avoiding up-down alternating permutations of length $2n+1$ are in one-to-one correspondence with standard Young tableaux of shape $(n+1,n,n-1)$, and 4123-avoiding up-down alternating permutations of length $2n$ are in bijection with shifted standard Young tableaux of shape $(n+2,n,n-2)$.