Degrees in Oriented Hypergraphs and Ramsey p-Chromatic Number

  • Yair Caro
  • Adriana Hansberg
Keywords: oriented hypergraphs, Ramsey $p$-chromatic number, $d$-degenerate hypergraph, Ramsey numbers, chromatic number

Abstract

The family $D(k,m)$ of graphs having an orientation such that for every vertex $v \in V(G)$ either (outdegree) $\deg^+(v) \le k$ or (indegree) $\deg^-(v) \le m$ have been investigated recently in several papers because of the role $D(k,m)$ plays in the efforts to estimate the maximum directed cut in digraphs and the minimum cover of digraphs by directed cuts. Results concerning the chromatic number of graphs in the family $D(k,m)$ have been obtained via the notion of $d$-degeneracy of graphs. In this paper we consider a far reaching generalization of the family $D(k,m)$, in a complementary form, into the context of $r$-uniform hypergraphs, using a generalization of Hakimi's theorem to $r$-uniform hypergraphs and by showing some tight connections with the well known Ramsey numbers for hypergraphs.
Published
2012-08-09
Article Number
P16