On Perfect Packings in Dense Graphs

  • J√≥zsef Balogh
  • Alexandr Kostochka
  • Andrew Treglown
Keywords: packings, equitable colourings

Abstract

We say that a graph $G$ has a perfect $H$-packing if there exists a set of vertex-disjoint copies of $H$ which cover all the vertices in $G$. We consider various problems concerning perfect $H$-packings: Given $n, r , D \in \mathbb N$, we characterise the edge density threshold that ensures a perfect $K_r$-packing in any graph $G$ on $n$ vertices and with minimum degree $\delta (G) \geq D$. We also give two conjectures concerning degree sequence conditions which force a graph to contain a perfect $H$-packing. Other related embedding problems are also considered. Indeed, we give a structural result concerning $K_r$-free graphs that satisfy a certain degree sequence condition.
Published
2013-03-08
Article Number
P57