The Size of Edge-critical Uniquely 3-Colorable Planar Graphs

  • Naoki Matsumoto
Keywords: Graph theory, Planar graphs, Unique coloring

Abstract

A graph $G$ is uniquely $k$-colorable if the chromatic number of $G$ is $k$ and $G$ has only one $k$-coloring up to permutation of the colors. A uniquely $k$-colorable graph $G$ is edge-critical if $G-e$ is not a uniquely $k$-colorable graph for any edge $e\in E(G)$. In this paper, we prove that if $G$ is an edge-critical uniquely $3$-colorable planar graph, then $|E(G)|\leq \frac{8}{3}|V(G)|-\frac{17}{3}$. On the other hand, there exists an infinite family of edge-critical uniquely 3-colorable planar graphs with $n$ vertices and $\frac{9}{4}n-6$ edges. Our result gives a first non-trivial upper bound for $|E(G)|$.

Published
2013-09-26
Article Number
P49