# On Keller’s Conjecture in Dimension Seven

• Andrzej P. Kisielewicz
• Magdalena Łysakowska
Keywords: Box, Cube tiling, Keller's conjecture, Rigidity.

### Abstract

A cube tiling of $\mathbb{R}^d$ is a family of pairwise disjoint cubes $[0,1)^d+T=\{[0,1)^d+t:t\in T\}$ such that $\bigcup_{t\in T}([0,1)^d+t=\mathbb{R}^d$. Two cubes $[0,1)^d+t$, $[0,1)^d+s$ are called a twin pair if $|t_j-s_j|=1$ for some $j\in [d]=\{1,\ldots, d\}$ and $t_i=s_i$ for every $i\in [d]\setminus \{j\}$. In $1930$, Keller conjectured that in every cube tiling of $\mathbb{R}^d$ there is a twin pair. Keller's conjecture is true for dimensions $d\leq 6$ and false for all dimensions $d\geq 8$. For $d=7$ the conjecture is still open. Let $x\in \mathbb{R}^d$, $i\in [d]$, and let $L(T,x,i)$ be the set of all $i$th coordinates $t_i$ of vectors $t\in T$ such that $([0,1)^d+t)\cap ([0,1]^d+x)\neq \emptyset$ and $t_i\leq x_i$. Let $r^-(T)=\min_{x\in \mathbb{R}^d}\; \max_{1\leq i\leq d}|L(T,x,i)|$ and $r^+(T)=\max_{x\in \mathbb{R}^d}\; \max_{1\leq i\leq d}|L(T,x,i)|$. It is known that if $r^-(T)\leq 2$ or $r^+(T)\geq 6$, then Keller's conjecture is true for $d=7$. In the present paper we show that it is also true for $d=7$ if $r^+(T)=5$. Thus, if $[0,1)^d+T$ is a counterexample to Keller's conjecture in dimension seven, then $r^-(T),r^+(T)\in \{3,4\}$.

Published
2015-01-20
Article Number
P1.16