-
Luis Pedro Montejano
-
Jorge Luis Ramírez-Alfonsín
Keywords:
Lawrence Oriented Matroids, Arrangements of Hyperplanes
Abstract
J.-P. Roudneff has conjectured that every arrangement of $n\ge 2d+1\ge 5$ (pseudo) hyperplanes in the real projective space $\mathbb{P}^d$ has at most $\sum_{i=0}^{d-2} \binom{n-1}{i}$ cells bounded by each hyperplane. In this note, we show the validity of this conjecture for arrangements arising from Lawrence oriented matroids.