Even More Infinite Ball Packings from Lorentzian Root Systems
Abstract
Boyd (1974) proposed a class of infinite ball packings that are generated by inversions. Later, Maxwell (1983) interpreted Boyd's construction in terms of root systems in Lorentz spaces. In particular, he showed that the space-like weight vectors correspond to a ball packing if and only if the associated Coxeter graph is of "level 2"'. In Maxwell's work, the simple roots form a basis of the representations space of the Coxeter group. In several recent studies, the more general based root system is considered, where the simple roots are only required to be positively independent. In this paper, we propose a geometric version of "level'' for root systems to replace Maxwell's graph theoretical "level''. Then we show that Maxwell's results naturally extend to the more general root systems with positively independent simple roots. In particular, the space-like extreme rays of the Tits cone correspond to a ball packing if and only if the root system is of level $2$. We also present a partial classification of level-$2$ root systems, namely the Coxeter $d$-polytopes of level-$2$ with $d+2$ facets.