An Improved Bound on (A+A)/(A+A)
Keywords:
Additive combinatorics
Abstract
We show that, for a finite set $A$ of real numbers, the size of the set
$$\frac{A+A}{A+A} = \left\{ \frac{a+b}{c+d} : a,b,c,d \in A, c+d \neq 0 \right \}$$
is bounded from below by
$$\left|\frac{A+A}{A+A} \right| \gg \frac{|A|^{2+1/4}}{|A / A|^{1/8} \log |A|}.$$
This improves a result of Roche-Newton (2016).