Counting Lyndon Factors

• Amy Glen
• Jamie Simpson
• W. F. Smyth
Keywords: Lyndon word, Sturmian word, Fibonacci word, Christoffel word

Abstract

In this paper, we determine the maximum number of distinct Lyndon factors that a word of length $n$ can contain. We also derive formulas for the expected total number of Lyndon factors in a word of length $n$ on an alphabet of size $\sigma$, as well as the expected number of distinct Lyndon factors in such a word. The minimum number of distinct Lyndon factors in a word of length $n$ is $1$ and the minimum total number is $n$, with both bounds being achieved by $x^n$ where $x$ is a letter. A more interesting question to ask is what is the minimum number of distinct Lyndon factors in a Lyndon word of length $n$? In this direction, it is known (Saari, 2014) that a lower bound for the number of distinct Lyndon factors in a Lyndon word of length $n$ is $\lceil\log_{\phi}(n) + 1\rceil$, where $\phi$ denotes the golden ratio $(1 + \sqrt{5})/2$. Moreover, this lower bound is sharp when $n$ is a Fibonacci number and is attained by the so-called finite Fibonacci Lyndon words, which are precisely the Lyndon factors of the well-known infinite Fibonacci word $\boldsymbol{f}$ (a special example of an infinite Sturmian word). Saari (2014) conjectured that if $w$ is Lyndon word of length $n$, $n\ne 6$, containing the least number of distinct Lyndon factors over all Lyndon words of the same length, then $w$ is a Christoffel word (i.e., a Lyndon factor of an infinite Sturmian word). We give a counterexample to this conjecture. Furthermore, we generalise Saari's result on the number of distinct Lyndon factors of a Fibonacci Lyndon word by determining the number of distinct Lyndon factors of a given Christoffel word. We end with two open problems.

Author Biographies

Amy Glen, Murdoch University

Lecturer in Mathematics

Jamie Simpson, Curtin University
Associate Professor in Mathematics
W. F. Smyth, McMaster University
Professor
Published
2017-08-11
Article Number
P3.28