Covering a Graph with Cycles of Length at Least 4

  • Hong Wang
Keywords: Cycles, Disjoint cycles, Cycle coverings

Abstract

Let $G$ be a graph of order $n\geq 4k$, where $k$ is a positive integer. Suppose that the minimum degree of $G$ is at least $\lceil n/2\rceil$. We show that $G$ contains $k$ vertex-disjoint cycles covering all the vertices of $G$ such that $k-1$ of them are quadrilaterals.
Published
2018-03-16
Article Number
P1.67