# Cubic Edge-Transitive Bi-$p$-Metacirculants

Keywords:
Bi-$p$-metacirculant, Symmetric graph, Semmisymmetric graph

### Abstract

A graph is said to be a *bi-Cayley graph* over a group $H$ if it admits $H$ as a group of automorphisms acting semiregularly on its vertices with two orbits. For a prime $p$, we call a bi-Cayley graph over a metacyclic $p$-group a *bi-$p$-metacirculant*. In this paper, the automorphism group of a connected cubic edge-transitive bi-$p$-metacirculant is characterized for an odd prime $p$, and the result reveals that a connected cubic edge-transitive bi-$p$-metacirculant exists only when $p=3$. Using this, a classification is given of connected cubic edge-transitive bi-Cayley graphs over an inner-abelian metacyclic $3$-group. As a result, we construct the first known infinite family of cubic semisymmetric graphs of order twice a $3$-power.