# On a Positivity Conjecture in the Character Table of $S_n$

### Abstract

In previous work of this author it was conjectured that the sum of power sums $p_\lambda,$ for partitions $\lambda$ ranging over an interval $[(1^n), \mu]$ in reverse lexicographic order, is Schur-positive. Here we investigate this conjecture and establish its truth in the following special cases: for $\mu\in [(n-4,1^4), (n)]$ or $\mu\in [(1^n), (3,1^{n-3})], $ or $\mu=(3, 2^k, 1^r)$ when $k\geq 1$ and $0\leq r\leq 2.$ Many new Schur positivity questions are presented.