# Ehrhart Polynomial Roots of Reflexive Polytopes

### Abstract

Recent work has focused on the roots $z\in\mathbb{C}$ of the Ehrhart polynomial of a lattice polytope $P$. The case when $\Re{z}=-1/2$ is of particular interest: these polytopes satisfy Golyshev's "canonical line hypothesis". We characterise such polytopes when $\mathrm{dim}(P)\leq 7$. We also consider the "half-strip condition", where all roots $z$ satisfy $-\mathrm{dim}(P)/2\leq\Re{z}\leq \mathrm{dim}(P)/2-1$, and show that this holds for any reflexive polytope with $\mathrm{dim}(P)\leq 5$. We give an example of a $10$-dimensional reflexive polytope which violates the half-strip condition, thus improving on an example by Ohsugi–Shibata in dimension $34$.