Classes of Graphs with $e$-Positive Chromatic Symmetric Function

  • Angèle M. Foley
  • Chính T. Hoàng
  • Owen D. Merkel


In the mid-1990s, Stanley and Stembridge conjectured that the chromatic symmetric functions of claw-free co-comparability (also called incomparability) graphs were $e$-positive. The quest for the proof of this conjecture has led to an examination of other, related graph classes. In 2013 Guay-Paquet proved that if unit interval graphs are $e$-positive, that implies claw-free incomparability graphs are as well. Inspired by this approach, we consider a related case and prove  that unit interval graphs whose complement is also a unit interval graph are $e$-positive.   We introduce the concept of strongly $e$-positive to denote a graph whose induced subgraphs are all $e$-positive, and conjecture that a graph is strongly $e$-positive if and only if it is (claw, net)-free.  

Article Number