Perfect 2-Colorings of the Grassmann Graph of Planes

  • Stefaan De Winter
  • Klaus Metsch

Abstract

We construct an infinite family of intriguing sets, or equivalently perfect 2-colorings, that are not tight in the Grassmann graph of planes of PG$(n,q)$, $n\ge 5$ odd, and show that the members of the family are the smallest possible examples if $n\ge 9$ or $q\ge 25$.

Published
2020-01-24
Article Number
P1.21