Multicolor Ramsey Numbers via Pseudorandom Graphs

  • Xiaoyu He
  • Yuval Wigderson


A weakly optimal $K_s$-free $(n,d,\lambda)$-graph is a $d$-regular $K_s$-free graph on $n$ vertices with $d=\Theta(n^{1-\alpha})$ and spectral expansion $\lambda=\Theta(n^{1-(s-1)\alpha})$, for some fixed $\alpha>0$. Such a graph is called optimal if additionally $\alpha = \frac{1}{2s-3}$. We prove that if $s_{1},\ldots,s_{k}\ge3$ are fixed positive integers and weakly optimal $K_{s_{i}}$-free pseudorandom graphs exist for each $1\le i\le k$, then the multicolor Ramsey numbers satisfy
\Omega\Big(\frac{t^{S+1}}{\log^{2S}t}\Big)\le r(s_{1},\ldots,s_{k},t)\le O\Big(\frac{t^{S+1}}{\log^{S}t}\Big),
as $t\rightarrow\infty$, where $S=\sum_{i=1}^{k}(s_{i}-2)$. This generalizes previous results of Mubayi and Verstra\"ete, who proved the case $k=1$, and Alon and Rödl, who proved the case $s_1=\cdots = s_k = 3$. Both previous results used the existence of optimal rather than weakly optimal $K_{s_i}$-free graphs.

Author Biography

Xiaoyu He, Stanford University
Graduate Student, Math Department
Article Number