Co-degrees Resilience for Perfect Matchings in Random Hypergraphs

  • Asaf Ferber
  • Lior Hirschfeld

Abstract

In this paper we prove an optimal co-degrees resilience property for the binomial $k$-uniform hypergraph model $H_{n,p}^k$ with respect to perfect matchings. That is, for a sufficiently large $n$ which is divisible by $k$, and $p\geq C_k\log {n}/n$, we prove that with high probability every subgraph $H\subseteq H^k_{n,p}$ with minimum co-degree (meaning, the number of supersets every set of size $k-1$ is contained in) at least $(1/2+o(1))np$ contains a perfect matching.

Published
2020-02-07
Article Number
P1.40