# Hajós and Ore Constructions for Digraphs

### Abstract

The dichromatic number $\overrightarrow{\chi}(D)$ of a digraph $D$ is the minimum number of colors needed to color the vertices of $D$ such that each color class induces an acyclic subdigraph of $D$. A digraph $D$ is $k$-critical if $\overrightarrow{\chi}(D) = k$ but $\overrightarrow{\chi}(D') < k$ for all proper subdigraphs $D'$ of $D$. We examine methods for creating infinite families of critical digraphs, the Dirac join and the directed and bidirected Hajós join. We prove that a digraph $D$ has dichromatic number at least $k$ if and only if it contains a subdigraph that can be obtained from bidirected complete graphs on $k$ vertices by directed Hajós joins and identifying non-adjacent vertices. Building upon that, we show that a digraph $D$ has dichromatic number at least $k$ if and only if it can be constructed from bidirected $K_k$'s by using directed and bidirected Hajós joins and identifying non-adjacent vertices (so called Ore joins), thereby transferring a well-known result of Urquhart to digraphs. Finally, we prove a Gallai-type theorem that characterizes the structure of the low vertex subdigraph of a critical digraph, that is, the subdigraph, which is induced by the vertices that have in-degree $k-1$ and out-degree $k-1$ in $D$.