Limit Densities of Patterns in Permutation Inflations

  • Tanya Khovanova
  • Eric Zhang

Abstract

Call a permutation $k$-inflatable if the sequence of its tensor products with uniform random permutations of increasing lengths has uniform $k$-point pattern densities. Previous work has shown that nontrivial $k$-inflatable permutations do not exist for $k \geq 4$. In this paper, we derive a general formula for the limit densities of patterns in the sequence of tensor products of a fixed permutation with each permutation from a convergent sequence. By applying this result, we completely characterize $3$-inflatable permutations and find explicit examples of $3$-inflatable permutations with various lengths, including the shortest examples with length $17$.

Published
2021-01-29
Article Number
P1.24