The Normalized Matching Property in Random and Pseudorandom Bipartite Graphs
Abstract
A bipartite graph $G(X,Y,E)$ with vertex partition $(X,Y)$ is said to have the Normalized Matching Property (NMP) if for any subset $S\subseteq X$ we have $\frac{|N(S)|}{|Y|}\geq\frac{|S|}{|X|}$. In this paper, we prove the following results about the Normalized Matching Property.
- The random bipartite graph $\mathbb{G}(k,n,p)$ with $|X|=k,|Y|=n$, and $k\leq n<\exp(k)$, and each pair $(x,y)\in X\times Y$ being an edge in $\mathbb{G}$ independently with probability $p$ has $p=\frac{\log n}{k}$ as the threshold for NMP. This generalizes a classic result of Erdős-Rényi on the $\frac{\log n}{n}$ threshold for the existence of a perfect matching in $\mathbb{G}(n,n,p)$.
- A bipartite graph $G(X,Y)$, with $k=|X|\le |Y|=n$, is said to be Thomason pseudorandom (following A. Thomason (Discrete Math., 1989)) with parameters $(p,\varepsilon)$ if every $x\in X$ has degree at least $pn$ and every pair of distinct $x, x'\in X$ have at most $(1+\varepsilon)p^2n$ common neighbours. We show that Thomason pseudorandom graphs have the following property: Given $\varepsilon>0$ and $n\geq k\gg 0$, there exist functions $f,g$ with $f(x), g(x)\to 0$ as $x\to 0$, and sets $\mathrm{Del}_X\subset X, \ \mathrm{Del}_Y\subset Y$ with $|\mathrm{Del}_X|\leq f(\varepsilon)k,\ |\mathrm{Del}_Y|\leq g(\varepsilon)n$ such that $G(X\setminus \mathrm{Del}_X,Y\setminus \mathrm{Del}_Y)$ has NMP. Enroute, we prove an 'almost' vertex decomposition theorem: Every Thomason pseudorandom bipartite graph $G(X,Y)$ admits - except for a negligible portion of its vertex set - a partition of its vertex set into graphs that are spanned by trees that have NMP, and which arise organically through the Euclidean GCD algorithm.
Addendum added September 21, 2021.