Some Applications of Wagner's Weighted Subgraph Counting Polynomial
Abstract
We use Wagner's weighted subgraph counting polynomial to prove that the partition function of the anti-ferromagnetic Ising model on line graphs is real rooted and to prove that roots of the edge cover polynomial have absolute value at most $4$. We more generally show that roots of the edge cover polynomial of a $k$-uniform hypergraph have absolute value at most $2^k$, and discuss applications of this to the roots of domination polynomials of graphs. We moreover discuss how our results relate to efficient algorithms for approximately computing evaluations of these polynomials.