Twenty Vertex Model and Domino Tilings of the Aztec Triangle
Abstract
We show that the number of configurations of the 20 Vertex model on certain domains with domain wall type boundary conditions is equal to the number of domino tilings of Aztec-like triangles, proving a conjecture of the author and Guitter. The result is based on the integrability of the 20 Vertex model and uses a connection to the U-turn boundary 6 Vertex model to re-express the number of 20 Vertex configurations as a simple determinant, which is then related to a Lindström-Gessel-Viennot determinant for the domino tiling problem. The common number of configurations is conjectured to be $2^{n(n-1)/2}\prod_{j=0}^{n-1}\frac{(4j+2)!}{(n+2j+1)!}=1, 4, 60, 3328, 678912...$ The enumeration result is extended to include refinements of both numbers.