Pattern-Functions, Statistics, and Shallow Permutations

  • Yosef Berman
  • Bridget Eileen Tenner


We study relationships between permutation statistics and pattern-functions, counting the number of times particular patterns occur in a permutation. This allows us to write several familiar statistics as linear combinations of pattern counts, both in terms of a permutation and in terms of its image under the fundamental bijection. We use these enumerations to resolve the question of characterizing so-called "shallow" permutations, whose depth (equivalently, disarray/displacement) is minimal with respect to length and reflection length. We present this characterization in several ways, including vincular patterns, mesh patterns, and a new object that we call "arrow patterns." Furthermore, we specialize to characterizing and enumerating shallow involutions and shallow cycles, encountering the Motzkin and large Schröder numbers, respectively.

Article Number