On Davenport Constant of the Group $C_2^{r-1} \oplus C_{2k}$
Abstract
Let $G$ be a finite abelian group. The Davenport constant $\mathsf{D}(G)$ is the maximal length of minimal zero-sum sequences over $G$. For groups of the form $C_2^{r-1} \oplus C_{2k}$ the Davenport constant is known for $r\leq 5$. In this paper, we get the precise value of $\mathsf{D}(C_2^{5} \oplus C_{2k})$ for $k\geq 149$. It is also worth pointing out that our result can imply the precise value of $\mathsf{D}(C_2^{4} \oplus C_{2k})$.