Abelian Sandpiles on Sierpiński Gasket Graphs
Abstract
The aim of the current work is to investigate structural properties of the sandpile group of a special class of self-similar graphs. More precisely, we consider Abelian sandpiles on Sierpiński gasket graphs and, for the choice of normal boundary conditions, we give a characterization of the identity element and a recursive description of the sandpile group. Finally, we consider Abelian sandpile Markov chains on the aforementioned graphs and we improve the existing bounds on the speed of convergence to stationarity.