The $s$-Weak Order and $s$-Permutahedra II: The Combinatorial Complex of Pure Intervals

  • Cesar Ceballos
  • Viviane Pons

Abstract

This paper introduces the geometric foundations for the study of the $s$-permutahedron and the $s$-associahedron, two objects that encode the underlying geometric structure of the $s$-weak order and the $s$-Tamari lattice. We introduce the $s$-permutahedron as the complex of pure intervals of the $s$-weak order, present enumerative results about its number of faces, and prove that it is a combinatorial complex. This leads, in particular, to an explicit combinatorial description of the intersection of two faces. We also introduce the $s$-associahedron as the complex of pure $s$-Tamari intervals of the $s$-Tamari lattice, show some enumerative results, and prove that it is isomorphic to a well chosen $\nu$-associahedron. Finally, we present three polytopality conjectures, evidence supporting them, and some hints about potential generalizations to other finite Coxeter groups.

Published
2024-08-09
Article Number
P3.12