A Classification of $Q$-Polynomial Distance-Regular Graphs with Girth $6$

  • Štefko Miklavič

Abstract

Let $\Gamma$ denote a $Q$-polynomial distance-regular graph with diameter $D$ and valency $k \ge 3$. In [Homotopy in $Q$-polynomial distance-regular graphs, Discrete Math., {\bf 223} (2000), 189–206], H. Lewis showed that the girth of $\Gamma$ is at most $6$. In this paper we classify graphs that attain this upper bound. We show that $\Gamma$ has girth $6$ if and only if it is either isomorphic to the Odd graph on a set of cardinality $2D +1$, or to a generalized hexagon of order $(1, k -1)$.

Published
2025-11-28
Article Number
P4.60