Thron-Type Continued Fractions (T-Fractions) for Some Classes of Increasing Trees
Abstract
We introduce some classes of increasing labeled and multilabeled trees, and we show that these trees provide combinatorial interpretations for certain Thron-type continued fractions with coefficients that are quasi-affine of period 2. Our proofs are based on bijections from trees to labeled Motzkin or Schröder paths; these bijections extend the well-known bijection of Françon--Viennot (1979) interpreted in terms of increasing binary trees. This work can also be viewed as a sequel to the recent work of Elvey Price and Sokal (2020), where they provide combinatorial interpretations for Thron-type continued fractions with coefficients that are affine. Towards the end of the paper, we conjecture an equidistribution of vincular patterns on permutations.