Zero Capacity Region of Multidimensional Run Length Constraints

  • Hisashi Ito
  • Akiko Kato
  • Zsigmond Nagy
  • Kenneth Zeger


For integers $d$ and $k$ satisfying $0 \le d \le k$, a binary sequence is said to satisfy a one-dimensional $(d,k)$ run length constraint if there are never more than $k$ zeros in a row, and if between any two ones there are at least $d$ zeros. For $n\geq 1$, the $n$-dimensional $(d,k)$-constrained capacity is defined as $$C^{n}_{d,k} = \lim_{m_1,m_2,\ldots,m_n\rightarrow\infty} {{\log_2 N_{m_1,m_2,\ldots ,m_n}^{(n; d,k)}} \over {m_1 m_2\cdots m_n}} $$ where $N_{m_1,m_2,\ldots ,m_n}^{(n; d,k)}$ denotes the number of $m_1\times m_2\times\cdots\times m_n$ $n$-dimensional binary rectangular patterns that satisfy the one-dimensional $(d,k)$ run length constraint in the direction of every coordinate axis. It is proven for all $n\ge 2$, $d\ge1$, and $k>d$ that $C^{n}_{d,k}=0$ if and only if $k=d+1$. Also, it is proven for every $d\geq 0$ and $k\geq d$ that $\lim_{n\rightarrow\infty}C^{n}_{d,k}=0$ if and only if $k\le 2d$.

Article Number