Linear Codes over Finite Chain Rings

  • Thomas Honold
  • Ivan Landjev


The aim of this paper is to develop a theory of linear codes over finite chain rings from a geometric viewpoint. Generalizing a well-known result for linear codes over fields, we prove that there exists a one-to-one correspondence between so-called fat linear codes over chain rings and multisets of points in projective Hjelmslev geometries, in the sense that semilinearly isomorphic codes correspond to equivalent multisets and vice versa. Using a selected class of multisets we show that certain MacDonald codes are linearly representable over nontrivial chain rings.

Article Number