# A Note on the Asymptotic Behavior of the Heights in $b$-Tries for $b$ Large

### Abstract

We study the limiting distribution of the height in a generalized trie in which external nodes are capable to store up to $b$ items (the so called $b$-tries). We assume that such a tree is built from $n$ random strings (items) generated by an unbiased memoryless source. In this paper, we discuss the case when $b$ and $n$ are both large. We shall identify five regions of the height distribution that should be compared to three regions obtained for *fixed* $b$. We prove that for most $n$, the limiting distribution is concentrated at the single point $k_1=\lfloor \log_2 (n/b)\rfloor +1$ as $n,b\to \infty$. We observe that this is quite different than the height distribution for fixed $b$, in which case the limiting distribution is of an extreme value type concentrated around $(1+1/b)\log_2 n$. We derive our results by analytic methods, namely generating functions and the saddle point method. We also present some numerical verification of our results.