Variations on Descents and Inversions in Permutations

Denis Chebikin

Abstract


We study new statistics on permutations that are variations on the descent and the inversion statistics. In particular, we consider the alternating descent set of a permutation $\sigma = \sigma_1\sigma_2\cdots\sigma_n$ defined as the set of indices $i$ such that either $i$ is odd and $\sigma_i > \sigma_{i+1}$, or $i$ is even and $\sigma_i < \sigma_{i+1}$. We show that this statistic is equidistributed with the odd $3$-factor set statistic on permutations $\tilde{\sigma} = \sigma_1\sigma_2\cdots\sigma_{n+1}$ with $\sigma_1=1$, defined to be the set of indices $i$ such that the triple $\sigma_i \sigma_{i+1} \sigma_{i+2}$ forms an odd permutation of size $3$. We then introduce Mahonian inversion statistics corresponding to the two new variations of descents and show that the joint distributions of the resulting descent-inversion pairs are the same, establishing a connection to two classical Mahonian statistics, maj and stat, along the way. We examine the generating functions involving alternating Eulerian polynomials, defined by analogy with the classical Eulerian polynomials $\sum_{\sigma\in\mathcal{S}_n} t^{{\rm des}(\sigma)+1}$ using alternating descents. For the alternating descent set statistic, we define the generating polynomial in two non-commutative variables by analogy with the $ab$-index of the Boolean algebra $B_n$, providing a link to permutations without consecutive descents. By looking at the number of alternating inversions, which we define in the paper, in alternating (down-up) permutations, we obtain a new $q$-analog of the Euler number $E_n$ and show how it emerges in a $q$-analog of an identity expressing $E_n$ as a weighted sum of Dyck paths.


Full Text: PDF