Unextendible Sequences in Finite Abelian Groups

  • Jujuan Zhuang


Let $G=C_{n_1}\oplus \ldots \oplus C_{n_r}$ be a finite abelian group with $r=1$ or $1 < n_1|\ldots|n_r$, and let $S=(a_1,\ldots,a_t)$ be a sequence of elements in $G$. We say $S$ is an unextendible sequence if $S$ is a zero-sum free sequence and for any element $g\in G$, the sequence $Sg$ is not zero-sum free any longer. Let $L(G)=\lceil \log_2{n_1}\rceil+\ldots+\lceil \log_2{n_r}\rceil$ and $d^*(G)=\sum_{i=1}^r(n_i-1)$, in this paper we prove, among other results, that the minimal length of an unextendible sequence in $G$ is not bigger than $L(G)$, and for any integer $k$, where $L(G)\leq k \leq d^*(G)$, there exists at least one unextendible sequence of length $k$.

Article Number