Lower Bounds for the Size of Random Maximal $H$-Free Graphs

  • Guy Wolfovitz

Abstract

We consider the next random process for generating a maximal $H$-free graph: Given a fixed graph $H$ and an integer $n$, start by taking a uniformly random permutation of the edges of the complete $n$-vertex graph $K_n$. Then, traverse the edges of $K_n$ according to the order imposed by the permutation and add each traversed edge to an (initially empty) evolving $n$-vertex graph - unless its addition creates a copy of $H$. The result of this process is a maximal $H$-free graph ${\Bbb M}_n(H)$. Our main result is a new lower bound on the expected number of edges in ${\Bbb M}_n(H)$, for $H$ that is regular, strictly $2$-balanced. As a corollary, we obtain new lower bounds for Turán numbers of complete, balanced bipartite graphs. Namely, for fixed $r \ge 5$, we show that ex$(n, K_{r,r}) = \Omega(n^{2-2/(r+1)}(\ln\ln n)^{1/(r^2-1)})$. This improves an old lower bound of Erdős and Spencer.

Our result relies on giving a non-trivial lower bound on the probability that a given edge is included in ${\Bbb M}_n(H)$, conditioned on the event that the edge is traversed relatively (but not trivially) early during the process.

Published
2009-01-07
Article Number
R4