# Dot Product Representations of Planar Graphs

### Abstract

A graph $G$ is a *$k$-dot product graph* if there exists a vector labelling $u: V(G) \to \mathbb{R}^k$ such that $u(i)^{T}u(j) \geq 1$ if and only if $ij \in E(G)$. Fiduccia, Scheinerman, Trenk and Zito [*Discrete Math.*, 1998] asked whether every planar graph is a $3$-dot product graph. We show that the answer is "no". On the other hand, every planar graph is a $4$-dot product graph. We also answer the corresponding questions for planar graphs of prescribed girth and for outerplanar graphs.