An Erdős-Ko-Rado Theorem for Multisets

  • Karen Meagher
  • Alison Purdy

Abstract

Let $k$ and $m$ be positive integers. A collection of $k$-multisets from $\{1,\dots, m \}$ is intersecting if every pair of multisets from the collection is intersecting. We prove that for $m \geq k+1$, the size of the largest such collection is $\binom{m+k-2}{k-1}$ and that when $m > k+1$, only a collection of all the $k$-multisets containing a fixed element will attain this bound. The size and structure of the largest intersecting collection of $k$-multisets for $m \leq k$ is also given.

Published
2011-11-21
Article Number
P220