Minimal Obstructions for Partial Representations of Interval Graphs

  • Pavel Klavik
  • Maria Saumell
Keywords: interval graphs, Partial representation extension, PQ-trees, Certifying algorithm

Abstract

Interval graphs are intersection graphs of closed intervals. A generalization of recognition called partial representation extension was introduced recently. The input gives an interval graph with a partial representation specifying some pre-drawn intervals.  We ask whether the remaining intervals can be added to create an extending representation. Two linear-time algorithms are known for solving this problem.

 In this paper, we characterize the minimal obstructions which make partial representations non-extendible. This generalizes Lekkerkerker and Boland's characterization of the minimal forbidden induced subgraphs of interval graphs. Each minimal obstruction consists of a forbidden induced subgraph together with at most four pre-drawn intervals. A Helly-type result follows: A partial representation is extendible if and only if every quadruple of pre-drawn intervals is extendible by itself. Our characterization leads to a linear-time certifying algorithm for partial representation extension.

Published
2018-12-21
Article Number
P4.55